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 SHELL STRESS ANALYSIS USING A VARIATIONAL 
METHOD BASED ON THREE-DIMENSIONAL 

FUNCTIONS WITH FINITE CARRIERS
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A modifi cation of the method is presented, which allows one to analyze a thin shell calculation by specifying the 
geometry only in the Cartesian coordinate system. A variational method is presented for determining the stress-
strain state of three-dimensional elastic structures based on the use of approximating functions with fi nite carriers 
of an arbitrary degree of approximation. The presented method can be successfully used both for the calculation of 
three-dimensional composite structures and for the calculation of thin shells using curvilinear coordinate systems, 
a comparison between the modeling of equation programming with the Ansys software gives a good indication for 
corrections of the method modifi cation. 
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INTRODUCTION

The Global Cartesian coordinate system is introduced  x, 
y, z, in which the investigated three-dimensional struc-
ture is divided into subdomains in the form of curved 
hexagons Vk (Fig.1). Hex faces are assumed to be 
piecewise smooth surfaces (Ωi , i=1,6) . A local Cartesian 
coordinate system is introduced x, y, z, , associated with 
a structural element. Note that instead of the local Carte-
sian coordinate system, x, y, z, a curvilinear coordinate 
system can be chosen, which is considered in the work 
[1].

Figure 1: three-dimensional structure
The local coordinate system, x, y, z, is chosen so that the 
equations of the faces can be set relative to the corre-
sponding coordinate planes in the following form:

(1)

Where Fi, i=1,6  – unambiguous class functions C1. The 
fi gure shows the numbers of the sides in parentheses; in 
circles, the numbers of the corner points (nodes) of the 
sub-region; and in squares, the numbers of the faces Ωi.
Within subarea Vk, a curvilinear coordinate system is in-
troduced, β1, β2, β3, which is related to the coordinate 
system, x, y, z, in the following way:

(2)

where the functions, y5=y5(β2,β3), z5=z5(β2,β3), d1 etc., are 
selected in this way [2], what's on the verge Ωi

k
 , i=1,6 

sub-regions Vk equations (2) go into the equations of 
these faces, on the boundary lines λj

k, j=1,12 – into the 
equations of these lines; 0≤β1, β2, β3≤1. Moreover, the 
coordinate system on these lines, β1, β2, β3, forms a uni-
form coordinate grid. As a result, if two sub domains are 
joined along a certain face and if this face in these sub-
domains is defi ned by the same equation, then the local 
coordinate grid on it for these subdomains will be the 
same. This ensures the continuity of the desired func-
tions during transition from one subdomain to another. It 
also makes it easy to fulfi ll the geometric boundary con-
ditions and those meant for joining the desired functions 
at the boundaries of the subdomains Vk.
Displacements defi ned in the global coordinate system   
x, y, z, within the subdomain are represented as:

(3)

Dk
inml - Unknown constants; form functions
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Note that only part of the unknown   have physical mean-
ing, namely they are nodal displacements of a subdo-
main Vk .
The triple sum (3) is written in matrix form:

(4)

Where                                                             - form functions 
defi ned in the coordinate system β1, β2, β3, ; [D

k] - matrix 
of unknown constants of dimension 3xJ, J=N ∙ M ∙ L.
Displacements in a local curvilinear coordinate system, 
β1, β2, β3, are recorded through movements in the global 
Cartesian coordinate system, x, y, z.

(5)

Where        – matrix of guide cosines of a local curv lin-
ear coordinate system, β1, β2, β3 in the local Cartesian 
coordinate system, x, y, z, [Ck] – matrix of guide cosines 
of the local Cartesian coordinate system, x, y, z, in the 
global cartesian coordinate system x, y, z. 
A class of problems is considered in the displacements 
and strains that are small; further, Hooke's law is valid. 
Substituting the approximating functions (4) into rela-
tions (5), then into the formula to determine the strains 
in a curvilinear coordinate system, using Hooke's law for 
the bulk stress state and the well-known formulas for the 
potential strain energy [4], we obtain the formula for the 
potential strain energy of the sub-region Vk:

(6)

Where [E] – elasticity matrix defi ned by known relations 
[3], [Ak] – differential matrix, which has the following form:

To determine the stress-strain state of the structure, the 
Lagrange variation principle [5] is used, on the basis of 
which the condition should be satisfi ed:

(7)

Where E – total design energy, Ek  – total energy subdo-
main Vk, Πk – potential strain energy, which is calculated 
in an orthogonal curvilinear coordinate system, β1, β2, β3, 
δWk– variation of the work of external forces of a subdo-
main Vk , K– number of subdomains.
From variation equation (7), we obtain a system of equa-
tions to determine unknown constants Dk

inml.

METHOD IMPLEMENTATION

The distinctive features of the presented methodology 
are as follows: arbitrary order of approximation of the 
desired functions; integration in a curved coordinate sys-
tem, β1, β2, β3, which makes the integration procedure 
the same for any body shape; there is no need to de-
scribe the geometry of objects in a curvilinear system, 
β1, β2, β3, since this system is internal and is constructed 
algorithmically based on the Cartesian coordinate sys-
tem, x, y, z.
Using the presented method, a thin cylindrical shell 
clamped at the ends (Fig. 2) was calculated L = 50 cm, 
loaded with an internal pressure of intensity q = 24MPa. 
Cylinder inner radius R = 50 cm, cylinder wall thickness 
t = 5 cm, elastic modulus E = 200 GPa, Poisson's ratio 
ν =0.3. Due to the presence of symmetry planes, one-
eighth of the shell was considered, which was limited to 
the coordinate planes, x, y, z. In the calculation, two sub-
domains (two fi nite elements) were used.

Figure 2

Figure 3
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RESULT AND DISCUSSIONS

The calculation results are shown in Table 1, where 
stress values are given. σzz and σyy are at points with 
coordinates (x, 0, z). The last two columns present the 
results from [6], in which this construction was divided 
into 300 elements.
For a fairly thin cylindrical shell with free ends under the 
action of a self-balanced system of two concentrated 
forces (Fig. 3), Table 2 compares the results obtained by 
this method with the results of other authors. The results 
are given for the following numerical parameters: L = 26.2 
cm; R = 12.5 cm; R / t = 52.5; F = 453 N; E = 74 GPa;
ν = 0.3125; R is the radius of the median surface. The 
calculation was carried out by two fi nite elements using 
symmetry (1/8 of the shell). Here are the values of the 
maximum defl ection wmax for various values of the or-
ders of the approximating functions. In [7], a solution was 
obtained for an inextensible shell, on the basis of which 
wmax= 0.275 cm.

Coordinates of 
the point, cm N = M = L , МPа [6], МPа

4 6 8
x z σzz σyy σzz σyy σzz σyy σzz σyy

50 0 -178.8 143.6 -132 156.9 -120.7 162.7 -113.2 176.1
55 0 217.4 266.3 191.4 256.3 184 252.9 175.3 242.4
50 8,33 -69.1 150.6 -94 139.3 -78.6 153.1 -84.3 148.0
55 8,33 139.9 192.6 154.8 207.2 143.7 197.7 147.7 201.6
50 25 447.7 191.9 550.4 235.9 599.5 256.9 591.9 253.7
55 25 -340.2 -145.8 -440.7 -188.9 -468.4 -200.7 -449.5 -192.6

Table 1: Stresses in a clamped shell

Finiteelement 
mesh [8] [9] N=М=L=6 N=М=L=8

1x1 0.264 0.269

0.284 0.285

2x2 0.280  0.284

4x4 0.287 0.288

6x6 0.288 -

8x8 0.289 -

Table 2: Shell defl ections (cm)

Figure 4: fi xed-fi xed supported by ANSYS

Figure 5: analysis by ANSYS fi xed-fi xed supported case 1

Figure 6: free-free supported by ANSYS

Figure 7: free-free supported by ANSYS
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Figure 8: case 2 analysis by ANSYS

Figure 9: max defl ection analysis by ANSYS case 2
The using of the Ansys software for analysis and compar-
ison for case 1 and 2, Fig. 4 shows the auto-meshing that 
gave deformations in coordinates 50,8.33 up to 0.5 cm
in fi xed-fi xed in Fig. 5 and 0.7 cm in free-free in Fig. 7. 
For case 2, the deformation result shows in Fig. 9 up 
to 0.28 cm compatible with the deformation analysis in 
Table 2; fi nite elements mesh are more than 4×4 which 
indicates more accuracy when the fi ne mesh is done in 
the Ansys software.

CONCLUSIONS

As can be seen from the calculation results, the present-
ed method agrees very well with the results of calcu-
lations by other authors, in which a signifi cantly larger 
number of elements were used. Thus, the considered 
method allows one, describing the geometry of shells 
only in the Cartesian coordinate system, to determine 
the stress-strain of thin shells. Moreover, to obtain ac-
ceptable results, it is not necessary to split the structure 
into a large number of elements.
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